Here is a selection of publications where different laminin isoforms were used to create more authentic cell culture systems.

  • Sort by

  • Area of interest

  • Direct Reprogramming of Human Fetal- and Stem Cell-Derived Glial Progenitor Cells into Midbrain Dopaminergic Neurons

    Nolbrant S., Giacomoni J., Hoban D.B, Bruzelius A., Birtele M., Chandler-Militello D., Pereira M., Rylander Ottosson D., Goldman S.A., Parmar M. Stem Cell Reports, 2020

    Human glial progenitor cells (hGPCs) are promising cellular substrates to explore for the in situ production of new neurons for brain repair. Proof of concept for direct neuronal reprogramming of glial progenitors using human cells has been difficult to perform since hGPCs are born late during human fetal development, with limited accessibility for in vitro culture. In this study, the authors provide evidence that hGPCs isolated from both the human fetal brain and differentiated from hESCs can be successfully reprogrammed into functional iNs, including induced DA neurons (iDANs). They also establish a renewable and reproducible stem cell-based hGPC system for direct neural conversion in vitro. Using this system, they have identified optimal combinations of fate determinants for the efficient dopaminergic (DA) conversion of hGPCs, thereby yielding a therapeutically relevant cell type that selectively degenerates in Parkinson’s disease.

  • Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation

    Nolbrant S., Heuer A., Parmar M., Kirkeby A. Nature Protocols, 2017

    Generation of precisely patterned neural cells from human pluripotent stem cells (hPSCs) is instrumental in developing disease models and stem cell therapies. Here, the authors provide a detailed 16-d protocol for obtaining high-purity ventral midbrain (VM) dopamine (DA) progenitors for intracerebral transplantation into animal models and for in vitro maturation into neurons. They have successfully transplanted such cells into the rat; however, in principle, the cells can be used for transplantation into any animal model, and the protocol is designed to also be compatible with clinical transplantation into humans. They show how to precisely set the balance of patterning factors to obtain specifically the caudal VM progenitors that give rise to DA-rich grafts. By specifying how to perform quality control (QC), troubleshooting, and adaptation of the procedure, this protocol will facilitate implementation in different laboratories and with a variety of hPSC lines. To facilitate the reproducibility of experiments and enable the shipping of cells between centers, the authors present a method for cryopreservation of the progenitors for subsequent direct transplantation or terminal differentiation into DA neurons. This protocol is free of xeno-derived products and can be performed under good manufacturing practice (GMP) conditions.

  • Niche-derived laminin-511 promotes midbrain dopaminergic neuron survival and differentiation through YAP

    Zhang D., Yang S., Toledo E.M., Gyllborg D., Saltó C., Villaescusa J.C., Arenas E.Sci Signal. 2017

    The authors investigated the mechanisms controlling the survival of mDA neurons using embryonic and mDA neurons, midbrain tissue from mice, and differentiated human neural stem cells. The work identifies laminin511-YAP as a key pathway by which niche signals control the survival and differentiation of mDA neurons. Laminin alpha-5 is present in the extracellular matrix surrounding mDA neurons and indeed, the authors found laminin-511 promoted the survival and differentiation of mDA neurons via a novel pathway involving YAP, miR-130a, and PTEN. Laminin-511 bound to integrin a3b1 and activated the transcriptional cofactor YAP. Laminin511-YAP signaling enhanced cell survival by inducing the expression of the microRNA miR-130a, which suppressed the synthesis of the cell death–associated protein PTEN. In addition, laminin511-YAP signaling increased the expression of transcription factors critical for mDA identities, such as LMX1A and PITX3, and prevented the loss of mDA neurons in response to oxidative stress, a finding that warrants further investigation to assess the therapeutic potential for PD patients. The authors propose that by enhancing laminin511-YAP signaling, it may be possible to prevent mDA neuron degeneration in PD or enhance the survival of mDA neurons in cell replacement therapies.

  • An Optimized Protocol for the Generation of Midbrain Dopamine Neurons under Defined Conditions

    Gantner C.W., Cota-Coronado A., Thomp L.H.STAR Protocols, 2020

    Here, the authors describe a xeno-free, feeder-free, and chemically defined protocol for the generation of ventral midbrain dopaminergic (vmDA) progenitors from human pluripotent stem cells (hPSCs). This simple-to-follow protocol results in high yields of cryopreservable dopamine neurons across multiple hPSC lines. Wnt signaling is the critical component of the differentiation and can be finely adjusted in a line-dependent manner to enhance the production of dopamine neurons for the purposes of transplantation, studying development and homeostasis, disease modeling, drug discovery, and drug development.

  • Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson’s Disease

    Kirkeby A., Nolbrant S., Tiklova K., Heuer A., Kee N., Cardoso T., Rylander Ottosson D., Lelos M.J., Rifes P., Dunnett S.B., Grealish S., Perlmann T., Parmar M. Cell Stem Cell, 2016

    Here, the authors developed a good manufacturing practice (GMP) differentiation protocol for the highly efficient and reproducible production of transplantable dopamine progenitors from hESCs on laminin-111. They identified predictive markers expressed in dopamine neuron progenitors that correlate with graft outcome in an animal model of Parkinson’s disease. Timed FGF8b resulted in a high yield of caudal VM cells and good graft outcomes correlate with markers of caudal VM and MHB. Commonly used markers did not accurately predict in vivo subtype-specific maturation. Instead, we identified a specific set of markers associated with the caudal midbrain that correlate with high dopaminergic yield after transplantation in vivo. Using these markers, GMP-adapted dopamine differentiation protocol was developed.

  • Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells

    Manno, Gyllborg, Codeluppi, Nishimura, Salto, Zeisel, Borm, Stott, Toledo, Villaescusa, Lönnerberg, Ryge, Barker, Arenas, Linnarsson.Cell, 2016

    Manno and colleagues used single-cell RNA sequencing to examine ventral midbrain development in humans and mice. They found that cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, they quantitatively assessed the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. The study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.

  • A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells

    Lu H.F., Chai C., Lim T.C., Leong M.F., Lim J.K., Gao S., Lim K.L., Wan A.C. Biomaterials 2014 

    Reprogramming of iPSCs on LN-521 and direct differentiation to dopaminergic cells on Laminin-521. This article demonstrates LN-521 as an optimal defined, xeno- and feeder-free matrix for the reprogramming of human iPS cells. Laminin-521 achieves high-efficiency reprogramming in different media, fast and easy expansion as well as direct differentiation to dopaminergic neurons on LN-521. The authors conclude that the efficient transgene-free hiPSC derivation and expansion on LN-521 enables clinical applications useful for human patient iPSCs and derivatives for cellular therapy.