Publications

Here is a selection of publications where different laminin isoforms were used to create more authentic cell culture systems.

  • Sort by

  • Area of interest

  • Direct Reprogramming of Human Fetal- and Stem Cell-Derived Glial Progenitor Cells into Midbrain Dopaminergic Neurons

    Nolbrant S., Giacomoni J., Hoban D.B, Bruzelius A., Birtele M., Chandler-Militello D., Pereira M., Rylander Ottosson D., Goldman S.A., Parmar M. Stem Cell Reports, 2020

    Human glial progenitor cells (hGPCs) are promising cellular substrates to explore for the in situ production of new neurons for brain repair. Proof of concept for direct neuronal reprogramming of glial progenitors using human cells has been difficult to perform since hGPCs are born late during human fetal development, with limited accessibility for in vitro culture. In this study, the authors provide evidence that hGPCs isolated from both the human fetal brain and differentiated from hESCs can be successfully reprogrammed into functional iNs, including induced DA neurons (iDANs). They also establish a renewable and reproducible stem cell-based hGPC system for direct neural conversion in vitro. Using this system, they have identified optimal combinations of fate determinants for the efficient dopaminergic (DA) conversion of hGPCs, thereby yielding a therapeutically relevant cell type that selectively degenerates in Parkinson’s disease.

  • Chronic stress induced disturbances in Laminin: a significant contributor to modulating microglial pro-inflammatory tone?

    Pietrogrande G., Mabotuwana N., Zhao Z., Mahmoud A., Johnson S.J., Nilsson M., Walker F.R.Brain, Behavior, and Immunity, 2017.

    In this study, Pietrogrande and colleagues have addressed the potential role of the extracellular matrix protein Laminin as a crucial factor to drive microglia into an inflamed state. Chronic restraint stress of C57BL6 adult mice over six weeks resulted in elevated levels of Laminin-α1 and pro-inflammatory markers such as TNF-α and iNOS, quantified by qPCR and western blot. Immunolabeling of Laminin-α1 identified pyramidal neurons and dentate gyrus to be their primary source within the hippocampus. Furthermore, Iba-1 staining of microglia revealed that chronic stress also strongly reduced the total branch length (15%), number of primary branches (47%) and number of branching points (68%) when compared to microglia of control mice. In vitro, primary microglia and BV2 cells grown on Laminin-111 expressed higher levels of TNF-α, IL-1β, and iNOS. In addition, LPS activation of microglia coated on Laminin-111 led to an increased pro-inflammatory state represented by higher pro-inflammatory cytokines level and phagocytic capability, both before and after stimulation. Interestingly, similar to observations made in vivo, microglia cultured on Laminin- 111 had fewer ramifications compared to control. These results, thus, expose the capability of chronic restraint stress in modulating Laminin within the CNS, an effect that has implications for understanding environmental mediated disturbances of microglial function.

  • Protocol for the derivation, culturing, and differentiation of human iPS-cell-derived neuroepithelial stem cells to study neural differentiation in vitro

    Javier Calvo-Garrido, Dania Winn, Camilla Maffezzini, Anna Wedell, Christoph Freyer, Anna Falk, Anna Wredenberg. STAR Protocols, 2021

    This protocol describes the derivation of neuroepithelial stem (NES) cells from human induced pluripotent stem cells. NES cells can be further differentiated into neurons and glia. The PSC culture and NES differentiation were done on plates coated with Biolaminin 521 (laminin-521). To avoid clonal selection of isolated NES cells, it is recommended to follow the culture conditions described. The protocol is expected to result in highly proliferate NES cells providing a good source of cells of a neuronal cell lineage. Glial cells are formed after approximately 45 days of differentiation.

  • β2 and γ3 laminins are critical cortical basement membrane components ablation of Lamb2 and Lamc3 genes disrupt cortical lamination and produces dysplasia

    Radner S., Banos C., Bachay G., Li Y.N., Hunter D.D., Brunken W.J., Yee K.T.Developmental Neurobiology 2012

    Here, the authors demonstrate the significance of laminin b2 and g3 expression in maintaining a functional cortical pial basement membrane to which Cajal Retzius and radial glial cells attach and in turn guide neural development. Several isoforms of laminins, those containing b2 and g3 in particular, have been isolated from the brain underlining their importance in CNS functions. In the present study, the authors employ a reverse genetic approach where mice with a homozygous deletion of b2 and g3 genes displayed cortical laminar disorganization. In addition, the ablation of both these laminin chains resulted in the incidence of human cobblestone lissencephaly. Interestingly, heterozygous mice also exhibited disruption of cortical neurons with lesser severity. In fact, similar to b2 distribution, g3 was also observed to be localized in the developing cortex. Mutation in the binding site of the laminin g1 gene results in abnormal cortex lamination.

  • Laminin and growth factor receptor activation stimulates differential growth responses in subpopulations of adult DRG neurons

    Tucker B.A., Rahimtula M., Mearow K.M.European Journal of Neuroscience, 2006

    Here they show laminin-induced neurite outgrowth and its relation to three known DRG neuronal types. They also show PI3K pathway is responsible. They also discuss this in the light of possible therapeutic targets. The study is limited in that that they only use invitrogen laminin (purified laminin-111) and isoform-specific effects cannot be seen, but they come to a number of highly interesting conclusions: 1) The current findings provide strong support for the use of the ECM molecule laminin in conjunction with NGF and GDNF in order to stimulate optimal levels of axon growth from all populations of regenerating sensory neurons. 2) identified intracellular signaling components that provide potential therapeutic targets when attempting to stimulate the regeneration of peripheral axons. Pharmacological alterations of the PI 3-K/Akt pathway resulting in activation of either PI 3-K or Akt could be beneficial. 3) Laminin-induced neurite growth occurs in the absence of added trophic factors only in heavy-chain neurofilament-positive and calcitonin gene-related peptide-positive DRG neurons [nerve growth factor (NGF)-responsive population]. In contrast, laminin alone is not sufficient to stimulate significant neurite growth from lectin Griffonia simplicifolia IB4-positive neurons (IB4+ve), although it is still required to elicit a growth response from these cells in the presence of glial-derived neurotrophic factor.