Publications

Here is a selection of publications where different laminin isoforms were used to create more authentic cell culture systems.

  • Sort by

  • Area of interest

  • Modifications in the basement membrane supramolecular structure of type IV collagen and laminin 5 organization facilitates skin derivative formation

    Alfayez M.Biomedical Research, 2010

    It has been suggested that laminin-332 is involved in the initiation of mammary gland development whilst laminin-511 is needed for maintaining the mammary bud down-growth into the dermis. In this study, the authors examine the proposed role(s) of the basement membrane proteins and their receptors during skin development using dissected mammary gland as a model. The pattern of expression of these molecules during skin formation was examined, utilizing collagen IV, laminin 5 and β4 or α6 integrin antibodies. The results suggest that these supramolecular structures play important roles in skin derivative development, more specifically mammary gland formation, and ease their resistance to skin derivatives down growth (invasion) into the underlying tissue.

  • Development of a biomaterial associated with mesenchymal stem cells and keratinocytes for use as a skin substitute

    Steffens D., Mathor M.B., Santi B.T.S., Luco D.P., Pranke P.Regen. Med., 2015

    Here they developed s scaffolds of poly-DL-lactic acid with and without the linkage of laminin-332, bringing together MSCs and keratinocytes aimed for treatment as a new skin substitute. Three groups of scaffolds were studied: 1) poly-DL-lactic acid (PDLLA), 2) hydrolyzed PDLLA (PDLLA/NaOH) and 3) PDLLA/Lam which is a PDLLA/NaOH scaffold linked to laminin-332. The results corroborate the hypothesis that laminin influenced the adhesion of the MSCs. Laminin significantly promoted the adhesion and spreading of proliferating oral and epidermal keratinocytes compared with collagen nanofibers only. The use of biocompatible and biodegradable polymers associated with the properties of laminin leads to an improvement in the adherence and viability of the cells, showing LN-332 is beneficial for the growth of MSCs and keratinocytes.

  • Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment

    M F Champliaud, G P Lunstrum, P Rousselle, T Nishiyama, D R Keene, R E Burgeson. J Cell Biol, 1996

    This article describes examination of laminin 5 (laminin-332) in amnion tissue, and show potential interaction with laminin-6 (311) and a new variant laminin-7 (321). Amniotic epithelial basement membrane is suggested to be similar with that of skin.

  • Synergistic activities of alpha3 and alpha6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse

    Both integrin α6-null mice α3-null mice die at birth, with kidney and lung defects at late stages of development, and skin blistering. To investigate possible overlapping functions between α3 and α6 integrins, we analyzed the phenotype of compound α3−/− and α6−/− mutant embryos. Double homozygous mutant embryos were growth-retarded and displayed several developmental defects not observed in the single mutant animals. The presence of novel phenotypes in double mutant embryos demonstrates the synergism between α3 and α6 integrins and their essential roles in multiple processes during embryogenesis.

  • Laminin Interactions with Head and Neck Cancer Cells under Low Fluid Shear Conditions Lead to Integrin Activation and Binding

    Fennewald S.M., Kantara C., Sastry S.K., Resto V.AJournal of biological chemistry, 2012

    Lymphatic metastasis of cancer cells involves movement from the primary tumor site to the lymph node, where the cells must be able to productively lodge and grow. Head and neck squamous cell carcinoma (HNSCC) cell lines cultured on placental laminin (laminin-511 is the major laminin), laminin-332 purified from human foreskin keratinocytes and human recombinant laminin-511, -211, -111, and -411. HNSCC cell lines bound to laminin-511 and -211 but also to -411 to a lower extent, under lymphodynamic low shear stress (0.07 dynes/cm2), consistent with lymph flow. Binding only occurred in the presence of shear stress and not in the absence of flow. The authors conclude that B1 integrins mediate tumor cell/lymph node interactions active under lymphodynamic flow. These interactions may drive growth and immunomodulation in this niche.

  • Tissue distribution of the laminin β1 and β2 chain during embryonic and fetal human development

    Roediger M., Miosge N., Gersdorff N. J Mol Hist., 2010

    Here, the authors investigated the tissue distribution of the laminin b1 and b2 chains on the protein level in various developing embryonic and fetal human organs between gestational weeks 8 and 12. The laminin b1 chain was ubiquitously expressed in the basement membrane zones of the brain, ganglia, blood vessels, liver, kidney, skin, pancreas, intestine, heart and skeletal system. Furthermore, the laminin b2 chain was present in the basement membrane zones of the brain, ganglia, skin, heart, and skeletal system. The findings of this study support and expand upon the theory that these two laminin chains are important during human development. In cartilage, the laminin b1 chain was expressed from gw 10 onwards but not during gw 8 and 9, whereas the detection of the laminin b2 chain was limited to gw 8 and 9. This indicates a developmental switch in the laminin b chain and suggests that the laminin b1 chain does not play a role in human cartilage development until the fetal stage. In human fetal cartilage (gw 17 and 24), a strong pericellular immunohistochemical reaction for laminin 111 was shown. In embryo chick sternum and mouse limb bud, laminin b1 and b2 chains are present in the cytoplasm of chondrocytes.

  • Immunohistochemical Distribution of Laminin-5 γ 2 Chain and its Developmental Change in Human Embryonic and Foetal Tissues

    Lu W., Miyazaki K., Mizushima H., Nemoto N.

    Here, immunohistochemical distribution of laminin γ2 chain, a subunit of the basement membrane protein laminin 332, was examined in 19 cases of human embryos and foetuses ranging from 4 to 25 weeks of gestation. Laminin γ2 was first detected in the basement membranes underlying ectodermal epithelial tissues, such as the skin and tooth, as early as 5–6 weeks of gestation. Between 6–7 and 12–13 weeks, laminin γ2 was detected in the basement membranes of various endodermal epithelial tissues, such as the bronchus, oesophagus, stomach, intestines, urinary bladder, gallbladder, and hepatopancreatic duct. The deposition of laminin γ2 in the basement membrane was associated with the process of morphogenesis. In the small intestine, laminin γ2 first appeared in the basement membrane of the primitive short villi, and its level gradually increased in the villus region but decreased in the cryptic region during the maturation of the organ. In addition, non-basement membrane immunoreactivity for laminin γ2 was detected in some mesoderm-derived tissues, such as the cartilage and skeletal and smooth muscle fibers. These results suggest a common role of laminin 332 and some specific roles of its γ2 chain in the morphogenesis of human tissues.

  • Immunohistochemical Distribution of Laminin-5 γ 2 Chain and its Developmental Change in Human Embryonic and Foetal Tissues

    Lu W., Miyazaki K., Mizushima H., Nemoto N.The Histochemical Journal, 2001

    Here, immunohistochemical distribution of laminin γ2 chain, a subunit of the basement membrane protein laminin 332, was examined in 19 cases of human embryos and fetuses ranging from 4 to 25 weeks of gestation. Laminin γ2 was first detected in the basement membranes underlying ectodermal epithelial tissues, such as the skin and tooth, as early as 5–6 weeks of gestation. Between 6–7 and 12–13 weeks, laminin γ2 was detected in the basement membranes of various endodermal epithelial tissues, such as the bronchus, oesophagus, stomach, intestines, urinary bladder, gallbladder, and hepatopancreatic duct. The deposition of laminin γ2 in the basement membrane was associated with the process of morphogenesis. In the small intestine, laminin γ2 first appeared in the basement membrane of the primitive short villi, and its level gradually increased in the villus region but decreased in the cryptic region during the maturation of the organ. In addition, non-basement membrane immunoreactivity for laminin γ2 was detected in some mesoderm-derived tissues, such as the cartilage and skeletal and smooth muscle fibers. These results suggest a common role of laminin 332 and some specific roles of its γ2 chain in the morphogenesis of human tissues.

  • Decrease of laminin‑511 in the basement membrane due to photoaging reduces epidermal stem/progenitor cells

    Iriyama S., Yasuda M., Nishikawa S., Takai E., Hosoi J., Amano S.Scientific reports, 2020

    Here, the authors examine how photoaging affects the function of Inter-follicular epidermal stem cells (IFE-SCs) which regulate epidermal proliferation and differentiation. It is known that daily sunlight disrupts epidermal homeostasis and the authors found that sun-exposed skin showed a decrease of MCSP-positive and β1-integrin-positive cells concomitantly with a decrease of laminin-511 at the dermal-epidermal junction (DEJ), as compared with sun-protected skin. Higher levels of laminin-511 were associated with increased colony formation efficiency, higher expression levels of MCSP as well as other stem cell markers in human skin. UVB exposure to cultured human skin impaired laminin-511 integrity at the dermal-epidermal junction and reduced MCSP-positive basal epidermal cells as well as K15-positive cells. Combined treatment with matrix metalloproteinase and heparanase inhibitors protected the integrity of laminin-511 and inhibited the reduction of MCSP-positive cells and K15-positive cells. These results suggest that photoaging may reduce the levels of MCSP-positive and K15-positive epidermal stem/ progenitor cells in the epidermis via loss of laminin-511 at the dermal-epidermal junction.

  • Chemically defined and xenogeneic-free culture method for human epidermal keratinocytes on laminin-based matrices

    Tjin M.S., Chua A.W.C, Tryggvason K. Nature Protocols, 2020

    In this protocol, the authors describe how to implement a defined, xeno-free culture system that supports long-term ex vivo expansion of functional human epidermal keratinocytes. Laminins, skin-specific basement membrane proteins play important roles in the maintenance of phenotypic integrity and in supporting the survival of keratinocytes that are adhered to them. The fully human keratinocyte culture system is presented in this article is ‘regulatory friendly’ and increases the potential of epithelial cellular therapy, which can be expanded to treat less severe burns and other skin defects, such as chronic diabetic wounds. It takes between 7 and 14 d to obtain an initial culture and a secondary culture from the primary culture can be expanded up to 20-fold within 4–5 d once cells reach confluency.