Publications

Here is a selection of publications where different laminin isoforms are being used to create more authentic cell culture systems

  • Area of interest

  • Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms

    Alvin W. Nienow, Christopher J. Hewitt, Thomas R.J. Heathman, Veronica A.M. Glyn, Gonҫalo N. Fonte, Mariana P. Hanga, Karen Coopman, Qasim A. Rafiq. Biochemical Engineering Journal, 2016

    In this article, 22 combinations of conditions in which hMSCs have been cultivated on microcarriers are reported - four different types and sizes of bioreactor. Biolaminin-521 surface coating was applied in two of them. The agitation strategy described is suggested to offer a basis for scale-up.

  • The role of adipose protein derived hydrogels in adipogenesis

    Shiri Uriel, Jung-Ju Huang, Monica L Moya, Megan E Francis, Rui Wang, Shu-Ying Chang, Ming-Huei Cheng, Eric M Brey. Biomaterials, 2008

    This study investigated the potential of adipose-derived matrices to induce adipogenesis in vitro and in vivo. Solutions containing basement membrane proteins and growth factors were extracted from subcutaneous adipose tissue and were induced to form gels. The authors suggested potential use for adipose tissue engineering.

  • Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: comparison to rat cortical cultures

    Tanja Hyvärinen, Anu Hyysalo, Fikret Emre Kapucu, Laura Aarnos, Andrey Vinogradov, Stephen J Eglen, Laura Ylä-Outinen, Susanna Narkilahti. Sci Rep, 2019

    In this article, differentiation of functionally active hPSC-derived cortical networks on defined laminin-521 substrate is reported. They assessed compared the activity development of hPSC-derived networks to that of widely used rat embryonic cortical cultures using microelectrode array (MEA) measurements. The authors conclude that hPSC-derived neural cultures produced with a defined protocol generate cortical type network activity, and they could be applied as a human-specific model for pharmacological studies and modeling network dysfunctions.

  • Publication: Assembly of functionalized silk together with cells to obtain proliferative 3D cultures

    Johansson et al. 2019 Scientific Reports

    This article describes the use of fibrous spider silk 3D network (Biosilk) for the culture of mammalian cells. The cells get uniformly integrated between the formed microfibers and the cells are highly proliferative, spreading out more efficiently than when encapsulated in a hydrogel. The authors conclude that the silk-assembly in presence of cells constitutes a viable option for 3D culture of cells integrated in an ECM-like network.

  • Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno-Free Conditions Restore Motor Deficits in Parkinsonian Rodents

    Jonathan C Niclis, Carlos W Gantner, Walaa F Alsanie, Stuart J McDougall, Chris R Bye, Andrew G Elefanty, Edouard G Stanley, John M Haynes, Colin W Pouton, Lachlan H Thompson, Clare L Parish. Stem Cells Transl Med, 2017

    The authors describe the first fully defined feeder- and xenogeneic-free protocol for the generation of vmDA neurons from hPSCs for use in animal models of Parkinson's disease. This protocol, utilizing Biolaminin 521 as a component, consistently increases both the yield and proportion of vmDA neural progenitors and neurons that display classical vmDA metabolic and electrophysiological properties. These findings may help in translation of hPSC-derived neurons into the clinic.

  • Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells in a Closed Cell Expansion System

    Gjorevski N. & Lutoff MP. Nat Protoc, 2017

    In this work, the authors describe a protocol for the generation of well-defined matrices for the culture of intestinal stem cells (ISCs) and intestinal organoids, using PEG hydrogel backbone functionalized with minimal adhesion cues including RGD (Arg-Gly-Asp), which is sufficient for ISC expansion, and laminin-111, which is required for organoid formation.

  • Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells in a Closed Cell Expansion System

    Fernanda C. Paccola Mesquita, Camila Hochman-Mendez, Jacquelynn Morrissey, Luiz C. Sampaio, Doris A. Taylor. Stem Cells Int, 2019

    The authors describe the use Quantum Cell Expansion System (QES) as an iPSC monolayer-based expansion system. Human iPSCs were expanded (up to 14-fold) using the QES on two different coatings (laminin 521 (LN521) and vitronectin (VN)). The esults demonstrated that the QES provides the necessary environment for exponential iPSC growth only when LN521 was used. They conclude that the system provides a promising platform to provide the number of cells necessary to recellularize small human-sized organ scaffolds for clinical purposes.

  • Structural biology of laminins

    Hohenester E. Essays in Biochemistry, 2019

    This article is a historical review on the structural biology of laminin proteins.

  • Regulation of the Immune System by Laminins

    Simon T., Bromberg J. Trends Immunol, 2017

    This review summarizes the structure of laminins, the modulation of their expression, and their interactions with the immune system. In addition, the role of laminins in autoimmune diseases and transplantation are discussed.

  • A Chemically Defined Hydrogel for Human Liver Organoid Culture

    Ye S., Boeter J.W.B., Mihajlovic M., van Steenbeek F.G, van Wolferen M.E., Oosterhoff  L.A., Marsee A., Caiazzo M., van der Laan L.J.W., Penning L.C., Vermonden T., Spee B., and Schneeberger K. Adv. Funct. Mater. 2020

    Here, a novel hydrogel-based on polyisocyanopeptides (PIC) and Biolaminin-111 is described for human liver organoid cultures. PIC is a synthetic polymer that can form a hydrogel with thermosensitive properties, making it easy to handle and very attractive for clinical applications. PIC hydrogel alone was not sufficient to support organoid growth. The addition of a laminin-entactin complex (LEC) to the plain PIC gel, resulted in efficient organoid formation and proliferation that seemed comparable to the Matrigel controls, with lower stiffnesses most favorable for organoid proliferation. The stem cell phenotype and proliferation and differentiation capacity of the organoids could be maintained in PIC-LEC over several passages, enabling their seemingly unlimited expansion and subsequent maturation. Moreover, organoids can be efficiently differentiated toward a hepatocyte-like phenotype with key liver functions. Importantly, they also show that the LEC in the PIC-LEC gels could be replaced by Biolaminin-111, resulting in a completely synthetic hydrogel for the expansion of human liver organoids.