Publications

Here is a selection of publications where different laminin isoforms were used to create more authentic cell culture systems.

  • Sort by

  • Area of interest

  • Laminin 511 and WNT signalling sustain prolonged expansion of hiPSC-derived hippocampal progenitors

    Keagan Dunville, Fabrizio Tonelli, Elena Novelli, Azzurra Codino, Verediana Massa, Anna Maria Frontino, Silvia Galfrè, Francesca Biondi, Stefano Gustincich, Matteo Caleo , Luca Pandolfini, Claudia Alia, and Federico Cremisi. Development, 2022

    The authors identify laminin-511 as a crucial laminin isoform for prolonging the neural stem cell (NSC) state and extending hippocampal NSC proliferation for over 200 days in vitro. Biolaminin 511 supported adhesion and cell cycle progression of the dividing hippocampal progenitors. LN511 was crucial in supporting progenitor proliferation, inhibiting differentiation, and sustaining a gene expression profile responsible for maintaining a hippocampal neurogenic niche for extended periods compared with isoforms LN121, LN332, LN441, and with a mouse laminin product. The study involved a novel protocol for differentiating hippocampal NPCs from human induced pluripotent stem cells via a WNT actuator. The differentiation capability of both young and older NPC populations was retained when tested by xenografting into mice.

  • Enhanced xeno-free differentiation of hiPSC-derived astroglia applied in a blood–brain barrier model

    Louise Delsing, Therése Kallur, Henrik Zetterberg, Ryan Hicks, Jane Synnergren. Fluids Barriers CNS, 2019

    This study shows that astroglia cells differentiated on Biolaminin 521 display an improved phenotype compared to a mouse EHS-extracted laminin L2020 product. Especially, cells differentiated on Biolaminin 521 had a higher secretion of factors important for BBB formation, such as GFAP, S100B, and Angiopoietin-1, than cells differentiated on the laminin extract. In addition, glutamate uptake and the ability to induce the expression of junction proteins in endothelial cells were affected by the culture matrix choice. The study showed differentiation of functional astroglia from three different human induced pluripotent stem cell lines which were used in a blood-brain barrier model.

  • Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models

    Anders Lundin, Louise Delsing, Maryam Clausen, Piero Ricchiuto, José Sanchez, Alan Sabirsh, Mei Ding, Jane Synnergren, Henrik Zetterberg, Gabriella Brolén, Ryan Hicks, Anna Herland, and Anna Falk Stem Cell Reports, 2018

    This study reports the differentiation of human induced pluripotent stem cell (hiPSC)-derived astroglia cells under defined conditions using Biolaminin 521 as the matrix.

  • Laminin 411 mediates endothelial specification via multiple signaling axes that converge on β-catenin

    Hall M.L., Givens S., Santosh N., Iacovino M., Kyba M. & Ogle B.M. Stem Cell Reports, 2022

    The authors show that laminin-411 (Biolaminin 411) alone induces endothelial cell differentiation in human and mouse induced pluripotent stem cells over collagen I or Matrigel. Overall, the results indicate that the extracellular matrix contributes to endothelial differentiation through multiple avenues which converge at β-catenin. This protocol is an improvement to previous methods, excluding the use of undefined matrix substances and being less complex in terms of added small-molecule reagents.

  • Protocol for automated production of human stem cell derived liver spheres

    Jose Meseguer-Ripolles, Alvile Kasarinaite, Baltasar Lucendo-Villarin, David C Hay. STAR Protoc, 2021

    In this article, the authors describe how they produce human liver spheres from pluripotent stem cell-derived hepatic progenitors, endothelial cells, and hepatic stellate cells, using LN521 in the differentiation protocol. Their process is automated using liquid handling and pipetting systems, permitting cost-effective scale-up and reducing sphere variability.

  • Live visualization of chromatin dynamics with fluorescent TALEs

    Miyanari Y., Ziegler-Birling C., Torres-Padilla M.E.Nature structural & molecular biology, 2013

    The authors of these two Nature publications show that laminin can be coated directly on glass, which many other substrates and proteins can not. This enables the growth of pluripotent stem cells as monolayers even on glass, which is especially suitable for live imaging.

  • An Optimized Protocol for the Generation of Midbrain Dopamine Neurons under Defined Conditions

    Gantner C.W., Cota-Coronado A., Thomp L.H.STAR Protocols, 2020

    Here, the authors describe a xeno-free, feeder-free, and chemically defined protocol for the generation of ventral midbrain dopaminergic (vmDA) progenitors from human pluripotent stem cells (hPSCs). This simple-to-follow protocol results in high yields of cryopreservable dopamine neurons across multiple hPSC lines. Wnt signaling is the critical component of the differentiation and can be finely adjusted in a line-dependent manner to enhance the production of dopamine neurons for the purposes of transplantation, studying development and homeostasis, disease modeling, drug discovery, and drug development.

  • Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation

    Nolbrant S., Heuer A., Parmar M., Kirkeby A. Nature Protocols, 2017

    Generation of precisely patterned neural cells from human pluripotent stem cells (hPSCs) is instrumental in developing disease models and stem cell therapies. Here, the authors provide a detailed 16-d protocol for obtaining high-purity ventral midbrain (VM) dopamine (DA) progenitors for intracerebral transplantation into animal models and for in vitro maturation into neurons. They have successfully transplanted such cells into the rat; however, in principle, the cells can be used for transplantation into any animal model, and the protocol is designed to also be compatible with clinical transplantation into humans. They show how to precisely set the balance of patterning factors to obtain specifically the caudal VM progenitors that give rise to DA-rich grafts. By specifying how to perform quality control (QC), troubleshooting, and adaptation of the procedure, this protocol will facilitate implementation in different laboratories and with a variety of hPSC lines. To facilitate the reproducibility of experiments and enable the shipping of cells between centers, the authors present a method for cryopreservation of the progenitors for subsequent direct transplantation or terminal differentiation into DA neurons. This protocol is free of xeno-derived products and can be performed under good manufacturing practice (GMP) conditions.

  • In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors

    Yap L., Wang J.-W., Moreno-Moral A., de Kleijn D.P.V., Petretto E., Tryggvason K. Cell Reports, 2019

    In this article, the authors report a high reproducible, chemically defined, xeno-free laminin-based differentiation protocol to generate stem cell-derived cardiovascular progenitors (CVPs). Laminin-221 (LN-221) was identified as the most likely expressed cardiac laminin. LN221 promoted the differentiation of pluripotent human embryonic stem cells (hESCs) toward cardiomyocyte lineage and downregulated pluripotency and teratoma-associated genes. Single-cell RNA sequencing of CVPs derived from hESC lines identified three main progenitor subpopulations. These CVPs were transplanted into myocardial infarction mice, where heart function was improved as measured by echocardiogram and human heart muscle bundle formation was identified histologically. This method may provide clinical-quality cells for use in regenerative cardiology.

  • Chemically defined generation of human cardiomyocytes

    Burridge P., Elena Matsa E., Shukla P., Lin Z., Churko J., Ebert A., Lan F., Diecke S., Huber B., Mordwinkin N., Plews J., Abilez O., Cui B., Gold J. & Wu J. Nature methods, 2014

    Cardiac differentiation strategy using a chemically defined medium consisting of just three components: the basal medium RPMI1640, l-ascorbic acid 2-phosphate and rice-derived recombinant human albumin. this protocol produced contractile sheets of up to 95% TNNT2+ cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell. They first assessed chemically defined pluripotent culture on other defined matrices: rh E-cadherin, rh vitronectin, laminin-521, iMatrix-511, human fibronectin and a fibronectin mimetic. Laminin-based matrices resulted in higher growth rates com­pared to the vitronectin peptide. Fibronectin-based matrices did not support pluripotent growth. All five suitable matrices supported efficient differentiation in CDM3 but only the laminin-based matrices main­tained long-term adhesion (>15 d) during CDM3 cardiac dif­ferentiation. The authors state that laminin-521 is an optimal matrix for chemically defined differentiation of human iPSC to cardiomyocytes but they still performed all subsequent characterization on the vitronectin peptide due to cost awareness.