Here is a selection of publications where different laminin isoforms are being used to create more authentic cell culture systems

  • Area of interest

  • Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models

    Anders Lundin, Louise Delsing, Maryam Clausen, Piero Ricchiuto, José Sanchez, Alan Sabirsh, Mei Ding, Jane Synnergren, Henrik Zetterberg, Gabriella Brolén, Ryan Hicks, Anna Herland, and Anna Falk Stem Cell Reports, 2018

    This study reports the differentiation of human induced pluripotent stem cell (hiPSC)-derived astroglia cells under defined conditions using Biolaminin 521 as the matrix.

  • Pluripotent stem cell-derived cardiovascular progenitors differentiated on laminin 221 regenerate and improve function of infarcted swine hearts

    Yap L, Chong LY, Tan C, Adusumalli S, Seow M, Guo J, Cai Z, Loo SJ, Lim E, Lath N, Ye L, Petretto E, Tryggvason K. BiorXiv, 2021

    The authors report a highly reproducible, chemically defined and fully humanized differentiation method of hESCs for the generation of potent cardiovascular progenitors (CVPs), using laminin-221 (Biolaminin 221) as the culture matrix. Transplantation of the CVPs into the myocardial infarcted pig hearts yielded maturation of the progenitor cells to cardiomyocytes and improved cardiac function using only 200 million CVPs, without fatal ventricular arrhythmia occurring. The results may have a significant impact on regenerative cardiology and the method is intended to be used in stem cell therapy of myocardial infarction in humans.

  • Regenerating airway epithelium using fibrous biomimetic basement membranes

    Dina Gadalla, Yourka D. Tchoukalova & David G. Lott

    This work focuses on the production of fiber layers to support epithelial differentiation for the bigger goal of developing a fibrous scaffold for airway epithelial regenerative implants. The authors show that fibers functionalized with Biolaminin 332 and collagen IV protein mixture promoted higher attachment, quicker migration, and increased proliferation of airway epithelial cells compared with non-coated fibers. In addition, gene expression levels of secretory and ciliated cell markers were higher. The findings indicate that laminin-coated electrospun fibers may be beneficial for the fabrication of bioengineered functional epithelia.

  • Laminin 411 mediates endothelial specification via multiple signaling axes that converge on β-catenin

    Hall M.L., Givens S., Santosh N., Iacovino M., Kyba M. & Ogle B.M. Stem Cell Reports, 2022

    The authors show that laminin-411 (Biolaminin 411) alone induces endothelial cell differentiation in human and mouse induced pluripotent stem cells over collagen I or Matrigel. The results indicate that the extracellular matrix contributes to endothelial differentiation through multiple avenues which converge at β-catenin. This protocol is an improvement to previous methods as it excludes the use of undefined matrix substances and is less complex in terms of added small-molecule reagents.

  • Publication: Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex

    Güven A et al. 2020 eLife

    Laminin-211 (LN211) is shown to increase basal progenitor cell proliferation in the mouse neocortex.

  • Publication: Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids

    Fiorenzano et al. 2021 Nature Communications

    Biosilk 3D scaffold supplemented with Biolaminin 111 was used to generate mature and functional ventral midbrain organoids with less variation both between organoid replicates and within an organoid, compared with a standard VM-organoid method. This study shows the benefits of silk especially in terms of permeability (no necrotic centers), resulting in improved cell maturity and experimental reproducibility.

  • Improved erythroid differentiation of multiple human pluripotent stem cell lines in microcarrier culture by modulation of Wnt/β-Catenin signaling

    Jaichandran Sivalingam, Hong Yu Chen, Bin-Xia Yang, Zhong Ri Lim, Alan Tin Lun Lam, Tsung Liang Woo, Allen Kuan-Liang Chen, Shaul Reuveny, Yuin-Han Loh, Steve Kah-Weng Oh. Haematologica, 2018

    This article describes means to scale up the pluripotent expansion stage by culturing hiPSCs on Biolaminin 521 (LN521)-coated microcarriers (MCs). The protocol allows hiPSC-MC aggregates to efficiently differentiate differentiate as embryoid bodies (EBs) in a scalable manner in suspension culture.

  • A Scalable Suspension Platform for Generating High-Density Cultures of Universal Red Blood Cells from Human Induced Pluripotent Stem Cells

    Jaichandran Sivalingam, Yu SuE, Zhong Ri Lim, Shaul Reuveny, Benoit Malleret, Steve K.W. Oh. Stem Cells Reports, 2020

    This article describes a scalable suspension agitation culture platform for the differentiation of human induced pluripotent stem cell-microcarrier aggregates into functional red blood cells. The report describes the cell quantity and quality in culture sizes ranging from 6-well plates to 500 ml spinner flasks, reaching up to 17 million high-quality cells per ml. The process could find applications in future large-scale red blood cell production in controlled bioreactors.

  • A Hydrogel Platform that Incorporates Laminin Isoforms for Efficient Presentation of Growth Factors – Neural Growth and Osteogenesis

    Oana Dobre, Mariana A. G. Oliva, Giuseppe Ciccone, Sara Trujillo, Aleixandre Rodrigo-Navarro, Douglas Cormac Venters, Virginia Llopis-Hernandez, Massimo Vassalli, Cristina Gonzalez-Garcia, Matthew J. Dalby, Manuel Salmeron-Sanchez. Advanced Functional Materials, 2021

    The authors report a 3D culture system with a defined matrix composition that reflects the complexity of the native ECM, where growth factors in combination with Biolaminin isoforms give more natural cellular processes. The authors incorporated the full-length Biolaminin 521, 332, and 411 proteins into a synthetic polymer network with controlled physico-chemical properties, and showed examples of hMSC osteogenesis and neurite growth in this 3D microenvironment.

  • Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate

    E. Chermnykh, E. and Kalabusheva, and E. Vorotelyak. Int J Mol Sci, 2018

    This article reviews the research conducted on the role of extracellular matrix in regulating epidermal stem cell fate, especially in the hair follicle stem cell niche.