Publications
Here is a selection of publications where different laminin isoforms were used to create more authentic cell culture systems.
-
Laminin 511 Precoating Promotes the Functional Recovery of Transplanted Corneal Endothelial Cells
Can Zhao, Qingjun Zhou, Haoyun Duan, Xin Wang, Yanni Jia, Yajie Gong, Wenjing Li, Chunxiao Dong, Zongyi Li, and Weiyun Shi. Tissue Eng Part A, 2020
Abnormal adhesion of grafted corneal endothelial cells (CECs) affects the application of intracameral injection for corneal endothelial dysfunction therapy. The authors explored whether laminin 511 (LN511) improves the therapeutic function of the intracameral CEC injection. Injected LN511 was found to be able to settle and form a coating on the posterior surface of Descemet's membrane (DM). The data suggests that the strategy of LN511 precoating and CECs' intracameral injection could be a potential method for the therapy of corneal endothelial dysfunction.
-
Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons
Li-Yang Chiang, Kate Poole, Beatriz E Oliveira, Neuza Duarte, Yinth Andrea Bernal Sierra, Leena Bruckner-Tuderman, Manuel Koch, Jing Hu, Gary R Lewin. Nature Neuroscience, 2011
The authors found that mouse epidermal keratinocytes produce a matrix that is inhibitory for sensory mechanotransduction and that the active molecular component is laminin-332. Laminin-332 could locally control sensory axon branching behavior, and the loss of laminin-332 in humans led to increased sensory terminal branching and may lead to a de-repression of mechanosensitive currents.
-
Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment
M F Champliaud, G P Lunstrum, P Rousselle, T Nishiyama, D R Keene, R E Burgeson. J Cell Biol, 1996
This article describes examination of laminin 5 (laminin-332) in amnion tissue, and show potential interaction with laminin-6 (311) and a new variant laminin-7 (321). Amniotic epithelial basement membrane is suggested to be similar with that of skin.
-
Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms
Alvin W. Nienow, Christopher J. Hewitt, Thomas R.J. Heathman, Veronica A.M. Glyn, Gonҫalo N. Fonte, Mariana P. Hanga, Karen Coopman, Qasim A. Rafiq. Biochemical Engineering Journal, 2016
In this article, 22 combinations of conditions in which hMSCs have been cultivated on microcarriers are reported - four different types and sizes of bioreactor. Biolaminin-521 surface coating was applied in two of them. The agitation strategy described is suggested to offer a basis for scale-up.
-
The role of adipose protein derived hydrogels in adipogenesis
Shiri Uriel, Jung-Ju Huang, Monica L Moya, Megan E Francis, Rui Wang, Shu-Ying Chang, Ming-Huei Cheng, Eric M Brey. Biomaterials, 2008
This study investigated the potential of adipose-derived matrices to induce adipogenesis in vitro and in vivo. Solutions containing basement membrane proteins and growth factors were extracted from subcutaneous adipose tissue and were induced to form gels. The authors suggested potential use for adipose tissue engineering.
-
Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: comparison to rat cortical cultures
Tanja Hyvärinen, Anu Hyysalo, Fikret Emre Kapucu, Laura Aarnos, Andrey Vinogradov, Stephen J Eglen, Laura Ylä-Outinen, Susanna Narkilahti. Sci Rep, 2019
In this article, differentiation of functionally active hPSC-derived cortical networks on defined laminin-521 substrate is reported. They assessed compared the activity development of hPSC-derived networks to that of widely used rat embryonic cortical cultures using microelectrode array (MEA) measurements. The authors conclude that hPSC-derived neural cultures produced with a defined protocol generate cortical type network activity, and they could be applied as a human-specific model for pharmacological studies and modeling network dysfunctions.
-
Publication: Assembly of functionalized silk together with cells to obtain proliferative 3D cultures
Johansson et al. 2019 Scientific Reports
This article describes the use of fibrous spider silk 3D network (Biosilk) for the culture of mammalian cells. The cells get uniformly integrated between the formed microfibers and the cells are highly proliferative, spreading out more efficiently than when encapsulated in a hydrogel. The authors conclude that the silk-assembly in presence of cells constitutes a viable option for 3D culture of cells integrated in an ECM-like network.
-
Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno-Free Conditions Restore Motor Deficits in Parkinsonian Rodents
Jonathan C Niclis, Carlos W Gantner, Walaa F Alsanie, Stuart J McDougall, Chris R Bye, Andrew G Elefanty, Edouard G Stanley, John M Haynes, Colin W Pouton, Lachlan H Thompson, Clare L Parish. Stem Cells Transl Med, 2017
The authors describe the first fully defined feeder- and xenogeneic-free protocol for the generation of vmDA neurons from hPSCs for use in animal models of Parkinson's disease. This protocol, utilizing Biolaminin 521 as a component, consistently increases both the yield and proportion of vmDA neural progenitors and neurons that display classical vmDA metabolic and electrophysiological properties. These findings may help in translation of hPSC-derived neurons into the clinic.
-
Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells in a Closed Cell Expansion System
Gjorevski N. & Lutoff MP. Nat Protoc, 2017
In this work, the authors describe a protocol for the generation of well-defined matrices for the culture of intestinal stem cells (ISCs) and intestinal organoids, using PEG hydrogel backbone functionalized with minimal adhesion cues including RGD (Arg-Gly-Asp), which is sufficient for ISC expansion, and laminin-111, which is required for organoid formation.
-
Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells in a Closed Cell Expansion System
Fernanda C. Paccola Mesquita, Camila Hochman-Mendez, Jacquelynn Morrissey, Luiz C. Sampaio, Doris A. Taylor. Stem Cells Int, 2019
The authors describe the use Quantum Cell Expansion System (QES) as an iPSC monolayer-based expansion system. Human iPSCs were expanded (up to 14-fold) using the QES on two different coatings (laminin 521 (LN521) and vitronectin (VN)). The esults demonstrated that the QES provides the necessary environment for exponential iPSC growth only when LN521 was used. They conclude that the system provides a promising platform to provide the number of cells necessary to recellularize small human-sized organ scaffolds for clinical purposes.