Publications

Here is a selection of publications where different laminin isoforms were used to create more authentic cell culture systems.

  • Sort by

  • Area of interest

  • Gelatine methacrylamide-based hydrogels – an alternative 3D cancer cell culture system

    Kaemmerer E., Melchels F.P.W, Holzapfel B.M, Meckel T., Hutmacher D.W., Loessner D. Acta Biomaterialia, 2014

    The authors present a 3D biomaterial platform for the analysis of ovarian cancer spheroid growth that is an efficient semi-synthetic alternative, combining native ECM components and tunable matrix properties, resulting in higher reproducibility, less complexity and better comparability between different groups than traditional cell monolayer approaches. In this study, gelatine methacrylamide-based hydrogels (GelMA) with added LN-411 were established as in vitro and in vivo spheroid-based 3D cancer models.

  • Laminins and cancer stem cells: Partners in crime?

    Qin Y., Rodin S., Simonson O.E., Hollande F. Seminars in Cancer Biology, 2016

    A review that discusses the role of laminin as a regulator of cancer stem cells, in tumor progression and drug resistance. A growing body of literature suggests that laminins may act as regulators of cancer stem cells, a tumor cell subpopulation that plays an instrumental role in long-term cancer maintenance, metastasis development, and therapeutic resistance. The accumulating evidence in this emerging research area suggests that laminins represent potential therapeutic targets for anti-cancer treatments against cancer stem cells and that they may be used as predictive and prognostic markers to inform clinical management and improve patient survival.

  • Laminin 521 enhances self-renewal via STAT3 activation and promotes tumor progression in colorectal cancer

    Qin Y, Shembrey C, Smith J, Paquet-Fifield S, Behrenbruch C, Beyit LM, Thomson BNJ, Heriot AG, Cao Y, Hollande F.Cancer Lett. 2020

    Remodeling of basement membrane proteins contributes to tumor progression towards the metastatic stage. Here, the authors show that one of these proteins, laminin 521 (LN521), promotes colorectal cancer (CRC) cell self-renewal and invasion. siRNA-mediated knockdown of endogenously-produced laminin alpha 5, as well as treatment with neutralizing antibodies against integrin α3β1 and α6β1, were able to reverse the effect of LN521 on self-renewal. Exposure of CRC cells to LN521 enhanced STAT3 phosphorylation, and incubation with STAT3 inhibitors Napabucasin and Stattic were sufficient to block the LN521-driven self-renewal increase. Robust expression of laminin alpha 5 was detected in 7/10 liver metastases tissue sections collected from CRC patients as well as in mouse liver metastasis xenografts, in most cases within areas expressing metastasis cancer stem cell markers such as c-KIT and CD44v6. Finally, retrospective analysis of multiple CRC datasets highlighted the significant association between high LN521 mRNA expression and poor clinical outcome in colorectal cancer patients. Collectively our results indicate that high Laminin 521 expression is a frequent feature of metastatic dissemination in CRC and that it promotes cell invasion and self-renewal, the latter through the engagement of integrin isoforms and activation of STAT3 signaling.

  • L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer

    Ganesh K., Basnet H., Kaygusuz Y., Laughney A.M., He L., Sharma R., O’Rourke K.P., Reuter V.P., Huang Y.-H., Turkekul M., Er E.E., Masilionis I., Manova-Todorova K., Weiser M.R., Saltz L.B., Garcia-Aguilar J., Koche R., Lowe S.W., Pe’er D., Shia J., Massagué J.Nature Cancer, 2020

    The authors show that L1CAM+ cells in human colorectal cancer (CRC) have metastasis-initiating capacity, and they define their relationship to tissue regeneration. By using recombinant L1CAM extracellular domain and basement membrane components, they confirmed that L1CAM bound heterophilically to laminins known to be expressed in the intestinal and endothelial cell basement membranes in addition to exhibiting homophilic interaction with L1CAM itself. L1CAM knockdown inhibited the ability of CRC organoid-derived cells to bind to laminin-coated plates. Together, these data suggest that L1CAM enables the adhesion of metastasis-initiating cells to laminin-rich basement membranes, which is required for metastasis and organoid growth.

  • Laminin-421 produced by lymphatic endothelial cells induces chemotaxis for human melanoma cells

    Saito N., Hamada J., Furukawa H., Tsutsumida A., Oyama A., Funayama E., Saito A., Tsuji T., Tada M., Moriuchi T., Yamamoto Y.Pigment Cell Melanoma Res., 2009

    Here, the authors investigate the molecular mechanism of lymphatic metastasis. They examined the influence of interactions between normal lymphatic endothelial cells (LECs) and melanoma cells on cell migration. LEC conditioned medium (LEC-CM) contained chemotactic and chemokinetic activities for human melanoma cell lines. The chemotactic activity of LEC-CM was abolished by immunodepletion with anti-laminin-1 antibody. And immunoprecipitation and Western blot analyses revealed that LEC-CM contained laminin a4 and 5, b1 and 2, and c1, corresponding to isoforms -521, -511, -421 and -411. When melanoma C8161 cells were treated with function-blocking antibodies to integrin a3 or a6, their chemotactic responses to LEC-CM were markedly reduced. Furthermore, the knock-down of tetraspanin CD151 weakened the chemotactic responses of C8161 and MeWo cells to LEC-CM. These data suggest that laminin secreted by LEC possibly facilitates lymphatic metastasis through the induction of chemotaxis of melanoma cells.

  • A laminin 511 matrix is regulated by TAZ and functions as the ligand for the a6Bb1 integrin to sustain breast cancer stem cells

    Chang C., Lal Goel H., Gao H., Pursell B., Shultz L.D., Greiner D.L., Ingerpuu S., Patarroyo M., Cao S., Lim E., Mao J., Kulju McKee K., Yurchenco P.D., Mercurio A.M.Research communication, 2015

    One of the first papers that highlighted the importance of ECM proteins in 2D breast cancer stem cell culture. Shows that laminin-511 is an acritical niche component for breast cancer stem cells. Breast cancer stem cells produce a laminin-511 matrix that functions as the ligand for the a6Bb1 integrin to promote self-renewal and tumor initiation. The authors observed that TAZ regulates the transcription of the a5 subunit of laminin-511 and the formation of a laminin-511 matrix. These data establish a positive feedback loop involving TAZ and laminin-511 that contributes to stemness in breast cancer. They see down-regulation of the laminin B2 chain.

  • ARNT-dependent HIF-2 transcriptional activity is not sufficient to regulate downstream target genes in neuroblastoma

    Persson C.U., von Stedingk K., Fredlund E., Bexell D., Påhlman S., Wigerup C. Mohlin S.Experimental cell research, 2020

    Hypoxia-inducible factor (HIF)-2α associates with poor outcomes in neuroblastoma and glioblastoma, and gain-of-function mutations in the EPAS1gene (encoding HIF-2α) have been reported in paragangliomas and pheochromocytomas. Specific targeting of a druggable hydrophobic pocket in the HIF-2αPAS-B domain with PT2385 has demonstrated promising clinical results for clear cell renal cell carcinoma (ccRCC). Here, the authors investigated the effect of PT2385-mediated inhibition of ARNT dependent HIF-2 activity. Neuroblastoma patient-derived xenograft (PDX) cells cultured on Biolaminin 521 were treated with PT2385 and analyzed for HIF-2-dependent gene expression, HIF activity, HIF-2αprotein localization, response to chemotherapy and orthotopic tumor growth in vivo. The authors detected high levels of HIF-2α protein in perivascular niches in neuroblastoma PDXs in vivo and at oxygenated conditions in PDX-derived cell cultures in vitro, particularly in the cytoplasmic fraction. Nuclear HIF-2αexpression was reduced following PT2385 treatment, but surprisingly, virtually no effects on tumor growth in vivo or expression of canonical HIF downstream target genes in vitro were observed. RNA sequencing of PT2385-treated PDX cells revealed a virtually unaffected transcriptome. Treatment with PT2385 did not affect cellular response to chemotherapy. In contrast, HIF-2αprotein knockdown resulted in profound downregulation of target genes. The lack of effect from PT2385 treatment in combination with high cytoplasmic HIF-2αexpressionat normoxia suggests that HIF-2α has additional roles than acting as an ARNT dependent transcription factor. It is important to further unravel the conditions at which HIF-2αhas transcriptional and non-transcriptional roles in neuroblastoma.

  • Endothelial Cell Laminin Isoforms, Laminins 8 and 10, Play Decisive Roles in T Cell Recruitment Across the Blood–Brain Barrier in Experimental Autoimmune Encephalomyelitis

    Sixt M., Engelhardt B., Pausch F., Hallmann R., Wendler O., Sorokin L.M. J Cell Biol., 2001

    Laminin-411 and laminin-511 are described as the major laminin isoforms in vascular basement membranes. Their expression was influenced by pro-inflammatory cytokines or angiostatic agents. Inflammatory cuffs occurred exclusively around endothelial basement membranes containing laminin-411, whereas in the presence of laminin-511 no infiltration was detectable. Integrin α6 and β-dystroglycan were prominent in CNS blood vessels, whereas no staining was observed for integrin α3, α7, and β4 subunits. One of the major laminin receptors, integrin α6β1, was localized predominantly on the endothelial cells, where it is likely to mediate interactions with the endothelial cell laminin-411 and -511, whereas astrocyte endfeet appear to utilize a different receptor for interactions with the parenchymal laminins. β-Dystroglycan occurred predominantly on astrocyte endfeet.

  • Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivoThe extracellular matrix protein laminin-10 promotes blood–brain barrier repair after hypoxia and inflammation in vitro

    Kangwantas K., Pinteaux E., Penny J.Journal of neuroinflammation 2016

    Integrity of the BBB is primarily maintained by brain endothelial cells, the tight junctions between them and their attachment to the blood vessel basement membrane (mainly composed fibronectin, collagen IV, and laminin-411 and -511). Here the authors used an in vitro model of the BBB, composed of primary rat brain endothelial cells grown on these different ECM proteins. The in vitro BBB model was exposed to oxygen-glucose deprivation with or without reoxygenation, and in the absence or the presence of IL-1β in order to mimic the ischemic and inflammatory conditions that occur during stroke. They show that laminin-511 plays a key role in maintenance of BBB integrity and that it’s a key ECM molecule involved in BBB repair after hypoxic injury and inflammation. The brain endothelial cells did not adhere well to laminin-411.

  • 3D map of the human corneal endothelial cell

    He Z., Forest F., Gain P., Rageade D., Bernard A., Acquart S., Peoch M., Defoe D.M., Thuret G. Scientific reports, 2016

    Human corneal endothelial cells (CECs) are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. Here, the authors characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin. Lateral membranes presented complex expansions resembling interdigitated foot processes at the basal surface. Integrin α3β1 was the only protein found exclusively at the basal surface, forming an almost homogenous layer that follows the slightly bumpy surface of Descemet’s membrane. Ligands of integrin α3β1, such as laminin-332, laminin-511, and laminin-521 constitute efficient coating substances that improve the yield of in vitro CEC cultures. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions.