Aligned Poly(ε-caprolactone) Nanofibers Guide the Orientation and Migration of Human Pluripotent Stem Cell-Derived Neurons, Astrocytes, and Oligodendrocyte Precursor Cells In Vitro

Hyysalo A., Ristola M., Jpki T., Honkanen M., Vippola M., Narkilahti S.Macromolecular Bioscience, 2017


Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC-derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε-caprolactone) nanofiber platforms, which guide cell orientation to resemble that of the spinal cord in vivo. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Clinically relevant human recombinant laminin substrates (laminin-521 and laminin-511) are compatible with PCL nanofibers and can be used for efficient culturing of hPSC-derived neurons and astrocytes on PCL nanofibers. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and the nanofiber-mediated orientation of hPSC-derived neurons is also demonstrated in a 3D environment.