Laminin therapy for the promotion of muscle regeneration

Riederer I., Bonomo A.C., Mouly V., Savino W.FEBS Lett., 2015

Accumulating data show that the local microenvironment plays a major role during muscle regeneration. In the satellite cell niche, a major extracellular matrix protein is laminin. Human myoblasts transplanted into immunodeficient mice are preferentially located in laminin-enriched areas. Additionally, laminin-111 enhances myoblast proliferation in vitro and increases the expression of the α7β1 integrin-type laminin receptor. Intramuscular injection of laminin-111 ameliorates muscular pathology in mdx mice, protecting muscle fibers from damage. Moreover, transplantation of human myoblasts with laminin-111 into Rag/mdx immunodeficient recipients improved the efficacy of myoblast transplantation, increasing the number of human dystrophin-positive myofibres. Taken together, these data strongly indicate that exogenous laminin can ameliorate the regeneration process in different models of muscular dystrophies and can be instrumental for improving cell therapy aiming at repairing the degeneration/regeneration process in skeletal muscle.