Maintenance of Hepatic Functions in Primary Human Hepatocytes Cultured on Xeno-Free and Chemical Defined Human Recombinant Laminins

Watanabe M., Zemack H., Johansson H., Hagbard L., Jorns C., Li M., Ellis E.PLOS ONE, 2016


In this study, the authors determined the distribution of laminin isoforms in human liver tissue and isolated primary human hepatocytes and investigated the efficacy of different human recombinant laminin isoforms on hepatic functions during culture. Protein expressions of laminin-chain α2, α3, α4, β1, β3, γ1, and γ2 were detected in both isolated human hepatocytes and liver tissue. α1 and α5 expression could be detected on RNA level but not on protein level in liver tissue or hepatocytes. Hepatocytes were isolated from five different individual livers, and cultured on human recombinant laminin isoforms -111, -211, -221, -332, -411, -421, -511, and -521, matrigel or collagen type IV. Hepatocytes cultured on laminin showed characteristic hexagonal shape in a flat cell monolayer. Viability, double-stranded DNA concentration, and Ki67 expression for hepatocytes cultured for six days on laminin were comparable to those cultured on EHS and Collagen. Hepatocytes cultured on laminin also displayed production of human albumin, alpha-1-antitrypsin, bile acids, and gene expression of liver-enriched factors, such as hepatocyte nuclear factor 4 alpha, glucose-6-phosphate, cytochrome P450 3A4, and multidrug resistance-associated protein 2. We conclude that all forms of human recombinant laminin tested maintain cell viability and liver-specific functions of primary human hepatocytes and that recombinant laminin is a promising xeno-free and chemical defined strategy for preservation of hepatocyte-specific function in vitro.